侵权投诉

如何将开发工具与故障硬件隔离

2019-08-15 09:32 次阅读
在将开发工具、笔记本电脑和其他资源连接到电子硬件进行测试和调试时,其实存在一定风险。尽管为了监控系统运行情况,有必要通过 UART、SPII2C 和其他总线直接进行连接,但很多时候开发中的硬件可能会发生故障。随后,硬件会通过这些接口输送不需要的电压和电流,损坏连接的工具和笔记本电脑。 这些工具通常很昂贵。不仅如此,而且据墨菲定律可知,硬件和工具将在最糟糕的时刻发生故障。由此造成的后果将是项目发生延迟,并且不得不花更多加急运费使工作台恢复正常运行。 本文将讨论开发人员如何能够使用基于平价隔离 IC 的接口保护他们的工具投资;这些 IC 可在 30 分钟内完成构建。此外还将讨论如何选择隔离器,并提供一些建议和提示,旨在确保当硬件确实发生故障时,开发工具和笔记本电脑不会受到影响。

选择隔离器时的考虑因素

隔离器可将一个电路分隔为两个电路,由隔离栅隔开。隔离栅每一侧的电路都是独立加电和接地。隔离栅的作用是充当滤波器,用于阻止高压和瞬变电压传输,只允许通过耦合机制从一侧向另一侧传输数字信息或数据。耦合机制通常有容性、磁性或光学性三种。 在许多情况下,读者会发现对于可能需要保护的某个接口,他们有不止一种选择。例如,I2C 隔离器通常提供容性和磁性两种。要选择采用哪一种技术,我们首先需要了解自己的工作环境。 容性耦合利用变化的电场来跨越隔离栅传输数据,因此对于有强磁场的应用是很好的选择。容性耦合还往往会带来更小的板基底面和更高的工作能效,因此成为很多应用的上佳选择。然而,值得注意的是,容性耦合有时确实会由于共享信号路径而产生噪声问题。 磁性耦合利用变化的磁场来跨越隔离栅传输数据,因此对于有强电场的应用是很好的选择。磁性耦合通常使用小型变压器,以帮助抑制噪声,并实现跨越隔离栅的高能效传输。 光学耦合利用光脉冲来跨越非导电隔离栅传输光,因此对于有噪声的电磁环境是最佳的选择。与磁性和容性耦合信号不同,光学耦合可以跨越隔离栅传输稳态信号。使用光耦合器的缺点是,它们的速度可能受限,需要的工作功率也更高。 在了解这几种技术及其特性后,接下来将介绍几种不同的总线协议,并详细指导如何在各种接口上隔离开发工具。

选择 I2C 隔离器

如果开发人员要为微控制器外部的器件开发驱动程序,则使用某种总线监视工具是一种好方法。开发人员可利用这些工具监控总线流量,而价格更贵的优质工具还可用于将信息写入总线。 简短经历描述:曾经有一次,我有一个 I2C/SPI 组合工具连接到客户的 I2C 总线。他们的硬件出了故障,跨 I2C 总线的电压下降了 42 伏,不仅毁坏了他们的硬件,也连累了我的开发工具。如果我当时使用 I2C 隔离器来保护自己的工具,就不必花额外的钱购买新工具,也不用支付加急运费。 在选择 I2C 隔离器时,应考虑几个特性。首先,电压隔离应至少达到 2500 伏 RMS。这种隔离级别可防御 90% 或以上的嵌入式开发故障。其次,应检查隔离器的数据速率。标准 I2C 的工作速率为 100 千位每秒 (kbps) 和 400 kbps。高速 I2C 的工作速率为 1000 kbps。开发工具或应用将决定哪种隔离器和隔离器技术是最佳选择。 有几种通用 I2C 隔离器可以有效地保护开发工具。对于通用隔离器,Analog Devices 的 ADUM3211ARZ-RL7 是不错的选择(图 1)。 Analog Devices 的 ADUM3211 通用型双通道磁性耦合隔离器示意图 图 1:ADUM3211 是一种通用型双通道磁性耦合隔离器,工作速率可高达 1000 kbps。(图片来源:Analog Devices) ADUM3211 使用磁性耦合机制,以高达 1000 kbps 的数据速率跨越隔离栅传输数据。因此,该隔离器可以处理高速 I2C,但不包含双向隔离栅。也就是说,开发工具可以监控总线,但是不能向总线写入数据,不过这对于大多数应用来说完全可以接受。 要保护需要同时在总线上监控和写入数据的开发工具,Texas Instruments 的 ISO1541DR I2C 隔离器是绝佳的选择(图 2)。ISO1541 在 SOIC-8 封装中使用容性耦合机制,以高达 1000 kbps 的速率传输双向数据。该隔离器包含两个独立的隔离通道:一个用于数据信号 (SDA),另一个用于时钟信号 (SCL)。 Texas Instruments 的 ISO1541DR I2C 隔离器示意图 图 2:Texas Instruments 的 ISO1541DR I2C 隔离器包含两个双向隔离通道,工作速率可高达 1000 kbps。(图片来源:Texas Instruments) 从图 1 和图 2 可以注意到,这些器件要求工具一侧向隔离器的工具一侧供电,而目标一侧向其目标一侧供电。忘记从各自的电源为每一侧供电,是导致隔离栅两端缺乏通信的常见原因,因此在安装过程中应注意确保两侧都有供电。

选择 SPI 隔离器

保护 SPI 总线可能比保护 I2C 总线更棘手一点。I2C 总线只包含两条通信线路,无论总线上连接了多少个器件。而 SPI 总线包含三条数据线,分别用于主输出、主输入和时钟。除了这三条数据线外,每个连接到 SPI 总线的器件还需要一条从设备选择线路。因此,任何 SPI 隔离器还必须包含几条用于从设备选择线路的隔离线路。 有几种隔离器非常适合用于保护 SPI 开发工具。第一种是 Analog Devices 推出的 ADUM3154 SPI 隔离器。ADUM3154 使用磁性耦合机制,以高达 17 兆位每秒 (Mbps) 的数据速率跨越隔离栅传输数据。该速率不仅覆盖大多数微控制器 SPI 外设的最大波特率 4 Mbps,也覆盖存储器接口控制器的常用数据速率。ADUM3154 还支持多达四个隔离的从设备选择(图 3)。 Analog Devices 的 ADUM3154 四通道 SPI 隔离器示意图 图 3:ADUM3154 是 Analog Devices 推出的四通道 SPI 隔离器,可处理高达 17 Mbps 的数据速率。(图片来源:Analog Devices) 如果 17 Mbps 速率不足以满足需求,还可以选择 Analog Devices 提供的 ADUM3151BRSZ-RL7(图 4)。 Analog Devices 的 ADUM3151 七通道 SPI 隔离器示意图 图 4:ADUM3151 是 Analog Devices 推出的七通道 SPI 隔离器,可处理高达 34 Mbps 的数据速率。(图片来源:Analog Devices) ADUM3151 也使用磁性耦合机制,但可处理高达 34 Mbps 的数据速率。它还有四个通道可用于从设备选择。

选择串行线调试 (SWD) 隔离器

在嵌入式软件工程师通常拥有的开发工具中,调试探头是最昂贵的工具之一。一个好的调试探头价格可高达几千美元。虽然编程线路出问题的可能性较低,但不值得冒险。 开发人员可以开发自己的隔离解决方案来保护所有 SWD 线路,但是这样做比较耗时,成本也较高。有一种简单的解决方案是使用 SEGGER Microcontroller Systems 的 J-Link SWD 隔离器(图 5)。 SEGGER Microcontroller Systems 的 J-Link SWD 隔离器图片 图 5:SEGGER Microcontroller Systems 推出的 J-Link SWD 隔离器可在调试编程器与目标系统之间提供 1000 伏的隔离。(图片来源:SEGGER Microcontroller Systems) J-Link SWD 可在仿真器与目标硬件之间提供 1000 VDC 的隔离。

选择和构建 UART 隔离器

很多开发人员可能认为隔离小型 UART 是在浪费时间和金钱。毕竟,如果一个低成本工具(例如 SparkFun Electronics 的 BOB-12731 USB 转串口分线板)发生故障,可以很容易更换。然而,如果确实发生故障,另一侧可能有价值几千美元的计算机设备应该受到保护。因此,投入这种额外的时间和金钱非常值得。 装配 UART 保护电路的步骤很简单,也可以按照类似的步骤来保护其他总线接口。首先需要选择一个隔离器。前面讨论的 ADUM3211 是很好的选择,因为它具有两个方向相反的高速隔离通道。这非常适合于 UART 的 Tx/Rx 线路,这些线路通常彼此相邻。 在选择隔离器之后,开发人员需要使用分线板,如 Aries Electronics 的 LCQT-SOIC8-8(图 6)。该分线板已包含针座,因此能够轻松焊接到 BOB-12731 上。 Aries Electronics 的 LCQT-SOIC8-8 图片 图 6:Aries Electronics 的 LCQT-SOIC8-8 用作 SOIC-8 芯片的分线板,而该芯片具有板上跳线,可快速连接目标设备。(图片来源:Aries Electronics) 将隔离器焊接到分线板上,然后焊接到 UART 适配器上时,务必确保电压和接地引脚正确对齐。否则,隔离器可能无法加电。此外,还必须确保隔离器通道的方向正确。如果分线板或隔离器无法正确对齐,可能有必要定制一个分线板(图 7)。 UART 隔离器电路图片 图 7:组装完成的 UART 隔离器电路已连接了 USB-UART 转换器,可提供与目标设备之间的定制隔离通信。(图片来源:Beningo Embedded Group) 组装完成后,USB-UART 转换器将向隔离器的工具一侧供电,而目标设备将向目标一侧供电。结果是一个得到隔离的双向 UART 工具,可受到最高 2500 伏的保护。

关于隔离开发工具的建议和提示

很多技术和隔离接口可用于保护开发工具。下面是关于保护工具投资的几项建议和提示:
  • 查看规格书,确保电压隔离规格符合您的需要。
  • 熟悉不同的隔离机制,确保为应用选择正确的技术。
  • 隔离任何连接回笔记本电脑 USB 端口的总线或接口,因为它是可能造成损坏的接地路径。
  • 对所选的隔离器利用现有的开发套件或者使用分线板,以缩短开发时间,降低开发成本。
  • 使用 SWD 隔离器保护专业调试器

总结

许多嵌入式系统开发人员在将昂贵的开发工具连接到测试中硬件时,不能做到三思而后行。这样做通常不会有什么问题。不过,有时会发生意外事件,使开发工具暴露在超出规格的电压和电流下,从而导致损坏。为了避免在最后一刻匆忙地恢复工作台的正常运行,应事先花上几个小时,使用市面上的很多隔离解决方案来正确隔离工具,从而提高开发效率,降低开发成本。
收藏 人收藏
分享:

评论

相关推荐

I2C总线物理拓扑结构的详细资料说明

IIC(Inter-Integrated Circuit)其实是IICBus简称,所以中文应该叫集成....
发表于 05-25 08:00 23次 阅读
I2C总线物理拓扑结构的详细资料说明

C6478/C6746的I2C0模块默认是上电自动使能的吗

[tr]C6478/C6746的I2C0模块默认是上电自动使能的吗?我看gel文件中没有对I2C0做相应的使能操作,并且在PSC0/1中也没有响...
发表于 05-20 10:39 26次 阅读
C6478/C6746的I2C0模块默认是上电自动使能的吗

关于I51开发板RTC时钟的问题如何解决

此图是老板的时钟图,带备用电池,I2C设置读取时间为了使设计更优化,本菜给出如下设计 对比2张图,晶振上多了2个匹配...
发表于 05-19 03:49 20次 阅读
关于I51开发板RTC时钟的问题如何解决

如何用I2C协议接口了RTC和PIC

大家好,我用I2C协议接口了RTC和PIC。当在Proteus中模拟时,我面临着一些计时问题,我一直在试图弄清楚出什么问题,以及...
发表于 05-15 14:27 38次 阅读
如何用I2C协议接口了RTC和PIC

采用数字隔离技术实现隔离型数据采集系统的应用设计

隔离型测量系统为模拟前端和系统底板提供分离的接地面,将传感器的测量与系统的其它部分隔离开。隔离前端的....
发表于 05-15 10:44 103次 阅读
采用数字隔离技术实现隔离型数据采集系统的应用设计

调用SPI或I2C函数时会出一些奇怪的错误怎么办

嗨,我有一个项目在我的旧电脑上工作。当我将文件复制到我的新计算机上时,当我调用SPI或I2C函数(注释掉这些没有问题)时,...
发表于 05-15 07:55 25次 阅读
调用SPI或I2C函数时会出一些奇怪的错误怎么办

如何将I2C LCD与STM32F103C8T6连接?

PCF8574是一个16引脚IC,用作I2C至8位并行IO扩展器。这意味着使用微控制器的I2C通信,....
的头像 单片机 发表于 05-14 11:01 461次 阅读
如何将I2C LCD与STM32F103C8T6连接?

能使用内置的I2C控制器或使用软件吗

刚开始的时候,我有一个带有I2C接口的PIC12F1820。读取外部串行EEPROM的最好方法是什么?1)我应该使用内置的I2C控...
发表于 05-14 08:14 23次 阅读
能使用内置的I2C控制器或使用软件吗

SC8721四集成MOSFET高效率同步Buck-Boost变换器的数据手册免费下载

SC8721是一个同步四开关降压升压变换器与四个集成开关。它可以有效地输出电压,无论是高,低或等于输....
发表于 05-14 08:00 29次 阅读
SC8721四集成MOSFET高效率同步Buck-Boost变换器的数据手册免费下载

I2C1它不工作怎么办

嘿!我试图让I2C1工作,但它不工作。如果我重命名I2C1到I2C2,并使用其他引脚,那么它正在工作。对我来说,似乎RA14和R...
发表于 05-13 09:24 25次 阅读
I2C1它不工作怎么办

PIC18F和MPASM程序集代码异常怎么办

你好,我有一个奇怪的问题,我希望有人能给我一些提示。我有一个PIC18F44K22,它的一部分是I2C从机。我认为它工作正常,但...
发表于 05-13 07:10 20次 阅读
PIC18F和MPASM程序集代码异常怎么办

如何把USB2532集成到我的板上

嗨,我想把USB2532集成到我的板上,因为FlexConnect的特性。用例在附图中描述。在主机模式下,我的C可以通过I2C通信控制...
发表于 05-12 08:39 23次 阅读
如何把USB2532集成到我的板上

如何通过I2C将Pic18F8722与MCP23017接口的任何代码吗

你好,有人知道通过I2C将Pic18F8722与MCP23017接口的任何代码吗?我已经删除了Explorer 18(DM183032)板上显示的所有...
发表于 05-11 14:27 24次 阅读
如何通过I2C将Pic18F8722与MCP23017接口的任何代码吗

PCB设计和电池模型提取的注意事项详细说明

本文档的主要内容详细介绍的是PCB设计和电池模型提取的注意事项详细说明
发表于 05-09 08:00 43次 阅读
PCB设计和电池模型提取的注意事项详细说明

如何使用I2C库来进行PIC18F

嗨,我正在学习如何使用I2C库来进行PIC18F。我假设你做的第一件事是——包括:I2C.H&GT,对吗?但是,获取:McCyP...
发表于 05-08 06:56 32次 阅读
如何使用I2C库来进行PIC18F

如何使用C语言实现51单片机模拟I2C总线

EEPROM为ATMEL公司的AT24C01A。单片机为ATMEL公司的AT89C51。
的头像 Wildesbeast 发表于 05-05 15:32 424次 阅读
如何使用C语言实现51单片机模拟I2C总线

有关内部集成电路总线(I2C或IIC)的基础知识

I2C 包含 2 条线路:1 条为 SCL(串行时钟),另 1 条为 SDA(串行数据)。这 2 条....
的头像 FPGA开发圈 发表于 04-30 16:01 874次 阅读
有关内部集成电路总线(I2C或IIC)的基础知识

STM32 I2C硬件的结构

我们可以看见STM32的硬件I2C有两个和数据有关的寄存器“数据寄存器(Data register)....
的头像 RTThread物联网操作系统 发表于 04-30 15:00 478次 阅读
STM32 I2C硬件的结构

I2C驱动的培训教程详细说明

I2C 总线是一种用于IC器件之间连接的双向二线制总线 I2C总线有两根信号线,一根为SDA(数据....
发表于 04-29 08:00 35次 阅读
I2C驱动的培训教程详细说明

I2C通信协议应该如何学习

我最近刚做完I2C通信协议的编写与调试,下面介绍一下我从一开始理解夏老师的程序,修改程序,直到下板调....
发表于 04-28 08:00 97次 阅读
I2C通信协议应该如何学习

MS5837系列压力传感器的数据手册免费下载

MS5837-30BA是新一代高分辨率压力传感器,具有I2C总线接口,用于水深测量系统,水深分辨率为....
发表于 04-24 08:00 66次 阅读
MS5837系列压力传感器的数据手册免费下载

MAX30102脉搏血氧仪和心率监测模块的数据手册免费下载

MAX30102是一个集成的脉搏血氧仪和心率监测模块。它包括内部发光二极管,光电探测器,光学元件,以....
发表于 04-13 08:00 188次 阅读
MAX30102脉搏血氧仪和心率监测模块的数据手册免费下载

使用0级器件提供替代的数字隔离解决方案

但是,了解到需要在48V车辆中隔离高压事件信号只是成功了一半。与纯电动汽车(EV)不同,HEV除使用....
的头像 牵手一起梦 发表于 04-08 16:42 659次 阅读
使用0级器件提供替代的数字隔离解决方案

I2C串行扩展通信的特点及实现IP核的设计

由于CPLD数字设计结构化的趋势,将出现针对CPLD不同层次的IP(Intellectual Pro....
的头像 牵手一起梦 发表于 04-07 09:54 458次 阅读
I2C串行扩展通信的特点及实现IP核的设计

总线I2C和SPI应该如何选择使用

现今,在低端数字通信应用领域,我们随处可见IIC (Inter-Integrated Circuit....
的头像 Wildesbeast 发表于 04-06 11:59 565次 阅读
总线I2C和SPI应该如何选择使用

BQ28Z610系列锂离子电池组气体表及保护方案芯片的数据手册免费下载

德州仪器BQ28Z610设备是一个高度集成,精确,1系列到2系列电池气体计量和保护解决方案,使自主充....
发表于 04-02 08:00 115次 阅读
BQ28Z610系列锂离子电池组气体表及保护方案芯片的数据手册免费下载

GPS之Ublox方案设计

GPS使用已经非常普遍,最近了解了下GPS方面的,文末会分享相关GPS的资料。 目前直接使用GPS芯....
发表于 03-30 11:36 88次 阅读
GPS之Ublox方案设计

I2C双向电平转换电路

本文分享下I2C双向电平转换电路的设计原理,以及需要注意的事项。 在I2C主从设备对接时,需要考虑主....
发表于 03-30 11:10 173次 阅读
I2C双向电平转换电路

STM32F10x_ 模拟I2C读写EEPROM

STM32F10x_模拟I2C读写EEPROM
的头像 黄工的嵌入式技术圈 发表于 03-25 11:13 480次 阅读
STM32F10x_ 模拟I2C读写EEPROM

STM32F10x _硬件I2C读写EEPROM(标准外设库版本)

STM32F10x_硬件I2C读写EEPROM(标准外设库版本)
的头像 黄工的嵌入式技术圈 发表于 03-25 11:11 478次 阅读
STM32F10x _硬件I2C读写EEPROM(标准外设库版本)

STM32F10x_硬件I2C主从通信 (轮询发送,中断接收)

STM32F10x_硬件I2C主从通信(轮询发送,中断接收)
的头像 黄工的嵌入式技术圈 发表于 03-25 10:59 591次 阅读
STM32F10x_硬件I2C主从通信 (轮询发送,中断接收)

TE新型温度与湿度传感器 分析湿度控制更好

瑞士公司TE Connectivity(TE,泰科电子)宣布推出新型温度和湿度传感器,尺寸更小、更精....
的头像 汽车玩家 发表于 03-24 16:49 803次 阅读
TE新型温度与湿度传感器 分析湿度控制更好

C51模拟I2C总线的详细资料说明

I2C总线是Philips公司最先推出的一种双向数据传输总线,其仅使用两根连线便可以实现全双工同步数....
发表于 03-23 11:36 88次 阅读
C51模拟I2C总线的详细资料说明

如何更加深入理解I2C总线、协议及应用

更加深入理解I2C总线、协议及应用
的头像 黄工的嵌入式技术圈 发表于 03-20 09:29 407次 阅读
如何更加深入理解I2C总线、协议及应用

STM8S_010_I2C读写EEPROM (硬件方式)

STM8S_010_I2C读写EEPROM(硬件方式)
的头像 黄工的嵌入式技术圈 发表于 03-14 14:54 485次 阅读
STM8S_010_I2C读写EEPROM (硬件方式)

ATMEL数字温度传感器AT30TS74的数据手册免费下载

AT30TS74是一个完整、精确的温度监测装置,设计用于多种需要测量局部温度作为系统功能和/或可靠性....
发表于 03-05 17:07 108次 阅读
ATMEL数字温度传感器AT30TS74的数据手册免费下载

EEPROM 在项目中我一般会做几项特殊操作

EEPROM,在项目中我一般会做几项特殊操作
的头像 黄工的嵌入式技术圈 发表于 03-04 14:01 618次 阅读
EEPROM 在项目中我一般会做几项特殊操作

通信教程03_I2C简史 基础原理及协议

通信教程03_I2C简史,基础原理及协议
的头像 黄工的嵌入式技术圈 发表于 02-05 13:14 757次 阅读
通信教程03_I2C简史 基础原理及协议

基于VHDL硬件的I2C接口并行扩展及接口设计

I2C总线接口器件在视频处理、移动通信等领域的应用已经非常普遍。另外,通用的I2C总线接口器件,如带....
发表于 01-20 16:51 297次 阅读
基于VHDL硬件的I2C接口并行扩展及接口设计

基于延时比较的模拟I2C总线多主通信方法设计

I2C总线(Inter IC BUS)是PHILIPS公司推出的双向两线串行通信标准。由于它具有接口....
发表于 01-18 16:20 248次 阅读
基于延时比较的模拟I2C总线多主通信方法设计

RX8025T时钟芯片的数据手册免费下载

该模块是一个符合I2C总线接口的实时时钟,包括一个32.768kHz的DTCXO。
发表于 01-17 14:20 220次 阅读
RX8025T时钟芯片的数据手册免费下载

Keil MDK和IAR EWARM新版本问题方案

Keil MDK和IAR EWARM新版本,及不同版本兼容性问题
的头像 黄工的嵌入式技术圈 发表于 01-10 14:47 566次 阅读
Keil MDK和IAR EWARM新版本问题方案

MCP23017和MCP23S17带有串行接口的16位IO扩展器数据手册免费下载

MCP23017/MCP23S17(MCP23X17)器件系列为I2C总线或SPI 应用提供16 位....
发表于 01-08 13:42 239次 阅读
MCP23017和MCP23S17带有串行接口的16位IO扩展器数据手册免费下载

I2C协议的简介和应用说明

I2C总线的硬件,是由一根数据线SDA,一根时钟线SCL构成。不同的器件,都是并联接在这两条线上。通....
发表于 12-31 15:54 190次 阅读
I2C协议的简介和应用说明

LSM6DS3六轴传感器的应用笔记免费下载

LSM6DS3是系统级封装的3D数字加速度计和3D数字陀螺仪,具有数字12C/SPI串口标准输出,在....
发表于 12-26 15:07 188次 阅读
LSM6DS3六轴传感器的应用笔记免费下载

单片机外围器件实用手册数据传输接口器件分册PDF电子书免费下载

本书是《单片机外围器件实用手册》系列丛书的数据传输接口器件分册。全书共分两大部分:第一部分(第一章至....
发表于 12-25 16:31 159次 阅读
单片机外围器件实用手册数据传输接口器件分册PDF电子书免费下载

Rockchip I2C开发指南资料免费下载

I2C(Inter-Integrated Circuit)总线是由PHILIPS 公司开发的两线式串....
发表于 12-24 11:57 134次 阅读
Rockchip I2C开发指南资料免费下载

ROCKCHIP I2C开发指南免费下载

前言 ROCKCHIP系列芯片为客户提供了标准I2C 总线,方便客户实现对不同外接设备的控制和访问。....
发表于 12-24 11:57 207次 阅读
ROCKCHIP I2C开发指南免费下载

如何实现提高电子经纬仪的测量精度及进行误差补偿详细设计资料说明

电子经纬仪是一种测量目标水平角和竖直角的仪器,在民用领域和军用领域中都有广泛的应用。本课题主要在于提....
发表于 12-24 10:07 183次 阅读
如何实现提高电子经纬仪的测量精度及进行误差补偿详细设计资料说明

HT16K33 LED控制器驱动的数据手册免费下载

HT1633是一款内存映射和多功能LED控制器驱动程序。设备中的最大显示段数为128个模式(16个段....
发表于 12-23 08:00 207次 阅读
HT16K33 LED控制器驱动的数据手册免费下载

LT8900无线收发芯片的数据手册免费下载

LT8900 是一款低成本,高集成度的 2.4GHZ 的无线收发芯片,片上集成发射机,接收机,频率综....
发表于 12-20 08:00 173次 阅读
LT8900无线收发芯片的数据手册免费下载

OLED12864的应用手册免费下载

具体请看I2C 资料,默认情况下模块的SDAin 与SDAout 是连接在一起的。如果SDAout ....
发表于 12-18 17:18 860次 阅读
OLED12864的应用手册免费下载

如何在树莓派上启用SPI / I2C

I2C非常适合需要大量输出的任何项目。 LCD屏幕的典型用途是使用,最多需要16个引脚。 I2C将其....
的头像 39度创意研究所 发表于 12-02 10:14 2025次 阅读
如何在树莓派上启用SPI / I2C

51单片机24个典型设计实例程序和工程文件免费下载

本文档的主要内容详细介绍的是51单片机24个典型设计实例程序和工程文件免费下载。
发表于 11-28 17:26 281次 阅读
51单片机24个典型设计实例程序和工程文件免费下载

恩智浦基于I2C接口的LED驱动器,高可靠性和高性价比

现在大街上随处可见的LED显示屏,还有装饰用的LED彩灯以及LED车灯,处处可见LED灯的身影,LE....
发表于 11-22 17:42 337次 阅读
恩智浦基于I2C接口的LED驱动器,高可靠性和高性价比

新型高频头Tuner FI1256的内部结构与特点及应用

高频头Tuner FI1256 将全频道(VHF/ U HF) 调谐器和中频( IF) 解调器集于一....
发表于 11-14 15:16 202次 阅读
新型高频头Tuner FI1256的内部结构与特点及应用

FI1200 MK2桌面视频调谐器系统的数据手册免费下载

调谐器部分配备有3个调谐RF MOSFET输入级,以及一个3波段混频器振荡器IC,包含振荡器、混频器....
发表于 11-14 14:51 182次 阅读
FI1200 MK2桌面视频调谐器系统的数据手册免费下载

PCA9306电压电平转换器的数据手册免费下载

PCA9306是一个双向I2C总线和SMBLus电压电平转换器,具有启用(EN)输入,工作电压范围为....
发表于 11-11 08:00 180次 阅读
PCA9306电压电平转换器的数据手册免费下载

如何才能读写24C02的串行EPROM

I2C总线是一种用于IC器件之间连接的二线制总线。它通过SDA(串行数据线)及SCL(串行时钟线)两....
的头像 Wildesbeast 发表于 11-09 14:17 2474次 阅读
如何才能读写24C02的串行EPROM

浅析六种常用的单片机通信协议

在单片机的应用中,通信协议是必不可少的一部分,上位机与下位机,单片机与单片机,单片机与外设模块之间的....
发表于 11-08 16:36 1774次 阅读
浅析六种常用的单片机通信协议

AD5398A 120 mA、吸电流、10位 I2C DAC

信息优势和特点 吸电流:120 mA 双线式(I2C兼容)1.8 V串行接口 10位分辨率 集成电流检测电阻 电源电压:2.7 V至5.5 V 对所有代码保证单调性 省电模式:0.5 µA(典型值) 内部基准电压源 超低噪声前置放大器 省电功能 上电复位 采用3 × 3阵列WLCSP封装 产品详情AD5398A是一款单通道、10位数模转换器(DAC),具有120 mA的吸电流输出能力,内置一个基准电压源,采用2.7 V至5.5 V单电源供电。这款DAC通过双线式(1.8 V、 I2C兼容)串行接口进行控制,能够以最高400 kHz的时钟速率工作。AD5398A内置一个上电复位电路,确保DAC输出上电至0 V并保持该电平,直到执行一次有效的写操作为止。它具有省电特性,省电模式下功耗可降至0.5 µA(典型值)。AD5398A设计用于照相手机、数码相机和便携式摄像机中的自动对焦、图像稳定及光学变焦应用。该器件同样适合许多工业应用,如温度、光线和运动控制等,在−30°C至+85°C温度范围内工作性能稳定。AD5398A的I2C地址范围为0x18至0x1F(含)。电路图、引脚图和封装图...
发表于 04-18 19:27 18次 阅读
AD5398A 120 mA、吸电流、10位 I2C DAC

AD5398 120 mA、吸电流、10位、I2C DAC

信息优势和特点 120 mA吸电流能力 提供8引脚LFCSP封装 双线式(I2C兼容)串行接口 10位分辨率 集成电流检测电阻 2.7 V至5.5 V电源 对所有代码保证单调性 省电模式:0.5 µA(典型值) 内部基准电压源 超低噪声前置放大器 掉电功能 上电复位产品详情AD5398是一款单通道10位DAC,具有120 mA输出吸电流能力。内置一个基准电压源,采用2.7 V至5.5 V单电源供电。这款DAC通过双线式(I2C兼容)串行接口进行控制,能够以最高400 kHz的时钟速率工作。AD5398内置一个上电复位电路,确保DAC输出上电至0 V并保持该电平,直到执行一次有效的写操作为止。它具有省电特性,省电模式下器件功耗可降至1 µA(最大值)。AD5398设计用于相机手机、数码相机和便携式摄像机中的自动对焦、图像稳定及光学变焦应用。AD5398同样适合许多工业应用,如温度、光线和运动控制等,在−40°C至+85°C温度范围内工作性能稳定。AD5398的I2C地址范围为0x18至0x1F(包括)。消费电子应用 镜头自动对焦 图像稳定 光学变焦 快门 光圈/曝光 中性密度(ND)滤光片 镜头盖 相机电话 数码相机 摄像头模块 数码摄像机/便携式摄像机 支持相机功能的设备 安保摄像头 网...
发表于 04-18 19:26 8次 阅读
AD5398 120 mA、吸电流、10位、I2C DAC

AD5671R 八通道12位nanoDAC+,内置2 PPM/°C基准电压源和I2C接口

信息优势和特点 高性能高相对精度(INL): ±3 LSB(最大值,16位)总非调整误差(TUE):0.14% FSR(最大值)失调误差:±1.5 mV(最大值)增益误差: ±0.06% FSR最大值 低漂移2.5 V基准电压源: 2 ppm/°C(典型值) 宽工作范围温度范围:−40°C至+125°C电源电压:2.7 V至5.5 V 易于实现用户可选增益:1或2(GAIN引脚)复位至零电平或中间电平(RSTSEL引脚)1.8 V逻辑兼容性 400 kHz I2C兼容型串行接口 鲁棒的HBM(额定值为2 kV)和FICDM ESD(额定值为1.5 kV)性能 20引脚TSSOP和LFCSP封装,符合RoHS标准 产品详情AD5671R/AD5675R分别是低功耗、8通道、12/16位缓冲电压输出数模转换器(DAC)。 内置2.5 V、2 ppm/˚C内部基准电压源(默认使能)和增益选择引脚,满量程输出为2.5 V(增益=1)或5 V(增益=2)。 采用2.7 V至5.5 V单电源供电,通过设计保证单调性。 AD5671R/AD5675R采用20引脚TSSOP和LFCSP封装,内置一个上电复位电路和一个RSTSEL引脚,确保DAC输出上电至零电平或中间电平,直到执行一次有效的写操作为止。 AD5671R/AD5675R具有关断模式,...
发表于 04-18 19:24 16次 阅读
AD5671R 八通道12位nanoDAC+,内置2 PPM/°C基准电压源和I2C接口

AD5675 内置I2C接口的八通道、16位NANODAC+

信息优势和特点 高性能 高相对精度(INL):16位时最大±3 LSB 总不可调整误差(TUE):±0.14% FSR最大值 失调误差:±1.5 mV(最大值) 增益误差:±0.06% FSR最大值 宽工作范围 温度范围:−40°C至+125°C 2.7 V至5.5 V电源 易于实现 用户可选增益:1或2(GAIN引脚) 1.8 V逻辑兼容 I2C兼容型串行接口 鲁棒的HBM(额定值为2 kV)和FICDM ESD(额定值为1.5 kV)性能 20引脚TSSOP封装,符合RoHS标准 产品详情AD5675是一款低功耗、八通道、16位缓冲电压输出数模转换器(DAC)。 内置增益选择引脚,满量程输出为VREF(增益 = 1)或2 x VREF(增益 = 2)。 采用2.7 V至5.5 V单电源供电,通过设计保证单调性。 AD5675采用20引脚TSSOP封装。 上电复位电路和RSTSEL引脚确保输出DAC上电至零电平或中量程,直到执行一次有效的写操作为止。 AD5675具有关断模式,此模式下的功耗典型值可降至1 μA。 AD5675采用多功能双线式串行接口,时钟速率最高达400 kHz,包含一个为1.8 V至5 V逻辑电平准备的VLOGIC引脚。 应用 光收发器 基站功率放大器 过程控制(PLC输入/输出卡) 工...
发表于 04-18 19:24 30次 阅读
AD5675 内置I2C接口的八通道、16位NANODAC+

AD5675R 八通道16位nanoDAC,内置2 PPM/°C基准电压源和I2C接口

信息优势和特点 高性能 高相对精度(INL):±3 LSB(最大值,16位) 总不可调整误差(TUE): ±0.14% FSR最大值 失调误差: ±1.5 mV(最大值) 增益误差: ±0.06% FSR(最大值) 低漂移2.5 V基准电压源: 2 ppm/°C(典型值) 宽工作范围 温度范围:−40°C至+125°C 2.7 V至5.5 V电源 易于实现 用户可选增益:1或2(GAIN引脚/位) 1.8 V逻辑兼容 400 kHz I2C兼容型串行接口 鲁棒的HBM(额定值为2 kV)和FICDM ESD(额定值为1.5 kV)性能 20引脚TSSOP和LFCSP封装,符合RoHS标准 产品详情AD5671R/AD5675R分别是低功耗、8通道、12/16位缓冲电压输出数模转换器(DAC)。 内置2.5 V、2 ppm/˚C内部基准电压源(默认使能)和增益选择引脚,满量程输出为2.5 V(增益=1)或5 V(增益=2)。 采用2.7 V至5.5 V单电源供电,通过设计保证单调性。 AD5671R/AD5675R采用20引脚TSSOP和LFCSP封装,内置一个上电复位电路和一个RSTSEL引脚,确保DAC输出上电至零电平或中间电平,直到执行一次有效的写操作为止。 AD5671R/AD5675R具有关断模式,此模式下的功耗典型值可降...
发表于 04-18 19:24 38次 阅读
AD5675R 八通道16位nanoDAC,内置2 PPM/°C基准电压源和I2C接口

AD5669R 8通道、16位、I2C 电压输出 denseDAC,集成5 ppm/°C片内基准电压源

信息优势和特点 低功耗、小尺寸、引脚兼容的八通道DAC:AD5669R: 16 位AD5629R: 12 位 4mm X 4mm 16 引脚LFCSP和16引脚TSSOP封装 用户可选的1.25 V/2.5 V、5 ppm/ºC片内基准电压源 关断模式的功耗:400 nA (5 V)、200 nA (3 V) 2.7 V 至5.5 V电源供电 通过设计保证单调性 上电复位至零电平或中量程 3 种关断功能 硬件 LDAC 和CLR 功能 I2C 兼容型串行接口支持标准(100 kHz)和快速(400 kHz)模式 产品详情AD5669R是一款低功耗、8通道、16位、缓冲电压输出DAC,采用2.7 V至5.5 V单电源供电,通过设计保证单调性。这款器件内置一个片内基准电压,内部增益为2。AD5669R-1内置一个1.25 V、5 ppm/°C基准电压源,满量程输出范围为2.5 V;AD5669R-2和AD5669R-3内置一个2.5 V、5 ppm/°C基准电压源,满量程输出范围为5 V。上电时,片内基准电压源关闭,因而可以用外部基准电压。内部基准电压则通过软件写入使能。该器件内置一个上电复位电路,确保DAC输出上电至0 V并保持该电平,直到执行一次有效的写操作为止。此外还具有各通道独立省电特性,在省电模式下,器件在5 V时的功耗降至400 nA,并提供软...
发表于 04-18 19:24 6次 阅读
AD5669R 8通道、16位、I2C 电压输出 denseDAC,集成5 ppm/°C片内基准电压源

AD5667R 双通道、16位nanoDAC®,内置5 ppm/°C片内基准电压源和I2C®接口

信息优势和特点 低功耗,最小的引脚兼容、双通道nanoDAC AD5627R/AD5647R/AD5667R:12/14/16位,1.25 V/2.5 V、5 ppm/°C片内基准电压源 AD5627/AD5667:12/16位,只能使用外部基准电压 3 mm x 3 mm、LFCSP和10引脚MSOP封装 通过设计保证单调性 上电复位至零电平 各通道独立关断 硬件LDAC和CLR功能 I2C兼容型串行接口,支持标准(100 kHz)、快速(400 kHz)和高速(3.4 MHz)三种模式产品详情AD5627R/AD5647R/AD5667R和AD5627/AD5667均属于nanoDAC 系列,分别是低功耗、双通道、12/14/16位缓冲电压输出数模转换器(DAC),含有或不含片内基准电压源,采用2.7 V至5.5 V单电源供电,通过设计保证单调性,还有一个I2C兼容型串行接口。AD5627R/AD5647R/AD5667R均内置一个片内基准电压源。AD56x7RBCPZ内置一个1.25 V、5 ppm/°C基准电压源,满量程输出范围可达到2.5 V;AD56x7RBRMZ内置一个2.5 V、5 ppm/°C基准电压源,满量程输出范围可达到5 V。上电,时片内基准电压源关闭,因而可以用外部基准电压。内部基准电压源则通过软件写入启用。AD5667和AD5627需利用外部基准电压来设置...
发表于 04-18 19:24 16次 阅读
AD5667R 双通道、16位nanoDAC®,内置5 ppm/°C片内基准电压源和I2C®接口

AD5665 四通道、16位nanoDAC®,内置I2C®接口

信息优势和特点 低功耗,最小的引脚兼容、四通道nanoDAC AD5625R/AD5645R/AD5665R12/14/16位nanoDAC2.5 V、5 ppm/°C片内基准电压源,采用TSSOP封装2.5 V、10 ppm/°C片内基准电压源,采用LFCSP封装1.25 V、10 ppm/°C片内基准电压源,采用LFCSP封装 AD5625/AD566512/16位nanoDAC只能使用外部基准电压源 3 mm × 3 mm、10引脚LFCSP和14引脚TSSOP 2.7 V至5.5 V电源供电 通过设计保证单调性 上电复位至零电平或中间电平 各通道独立关断 硬件LDAC 和 CLR功能 I2C兼容串行接口,支持标准(100 kHz)、快速(400 kHz)和高速(3.4 MHz)模式产品详情AD5625R/AD5645R/AD5665R和AD5625/AD5665均属于nanoDAC®系列,分别是低功耗、四通道、12/14/16位缓冲电压输出数模转换器(DAC),含有或不含片内基准电压源,采用2.7 V至5.5 V单电源供电,通过设计保证单调性,还有一个I2C兼容型串行接口。AD5625R/AD5645R/AD5665R均内置一个片内基准电压源。AD56x5R的LFCSP封装产品内置一个1.25 V或2.5 V、10 ppm/°C基准电压源,满量程输出范围可达到2.5 V或5 V;AD56x5R的...
发表于 04-18 19:24 6次 阅读
AD5665 四通道、16位nanoDAC®,内置I2C®接口

AD5667 双通道、16位nanoDAC®,内置I2C®接口

信息优势和特点 低功耗,最小的引脚兼容、双通道nanoDAC AD5627R/AD5647R/AD5667R:12/14/16位,1.25 V/2.5 V、5 ppm/°C片内基准电压源 AD5627/AD5667:12/16位,只能使用外部基准电压 3 mm x 3 mm、LFCSP和10引脚MSOP封装 采用2.7 V至5.5 V电源供电 通过设计保证单调性 上电复位至零电平 各通道独立省电 硬件LDAC和CLR功能 I2C兼容型串行接口,支持标准(100 kHz)、快速(400 kHz)和高速(3.4 MHz)三种模式产品详情AD5627R/AD5647R/AD5667R和AD5627/AD5667均属于nanoDAC 系列,分别是低功耗、双通道、12/14/16位缓冲电压输出数模转换器(DAC),含有或不含片内基准电压源,采用2.7 V至5.5 V单电源供电,通过设计保证单调性,还有一个I2C兼容型串行接口。AD5627R/AD5647R/AD5667R均内置一个片内基准电压源。AD56x7RBCPZ内置一个1.25 V、5 ppm/°C基准电压源,满量程输出范围可达到2.5 V;AD56x7RBRMZ内置一个2.5 V、5 ppm/°C基准电压源,满量程输出范围可达到5 V。上电时,片内基准电压源关闭,因而可以用外部基准电压。内部基准电压源则通过软件写入启用。AD5667和AD...
发表于 04-18 19:24 36次 阅读
AD5667 双通道、16位nanoDAC®,内置I2C®接口

AD5647R 双通道、14位NANODAC®,内置5 ppm/°C片内基准电压源和I2C®接口

信息优势和特点 低功耗,最小的引脚兼容、双通道nanoDAC AD5627R/AD5647R/AD5667R:12/14/16位,1.25 V/2.5 V、5 ppm/°C片内基准电压源 AD5627/AD5667:12/16位,只能使用外部基准电压 3 mm x 3 mm、LFCSP和10引脚MSOP封装 采用2.7 V至5.5 V电源供电 通过设计保证单调性 上电复位至零电平 各通道独立关断 硬件LDAC和CLR功能 I2C兼容型串行接口,支持标准(100 kHz)、快速(400 kHz)和高速(3.4 MHz)三种模式产品详情AD5627R/AD5647R/AD5667R和AD5627/AD5667均属于nanoDAC®系列,分别是低功耗、双通道、12/14/16位缓冲电压输出数模转换器(DAC),含有或不含片内基准电压源,采用2.7 V至5.5 V单电源供电,通过设计保证单调性,还有一个I2C兼容型串行接口。AD5627R/AD5647R/AD5667R均内置一个片内基准电压源。AD56x7RBCPZ内置一个1.25 V、5 ppm/°C基准电压源,满量程输出范围可达到2.5 V;AD56x7RBRMZ内置一个2.5 V、5 ppm/°C基准电压源,满量程输出范围可达到5 V。上电时,片内基准电压源关闭,因而可以用外部基准电压源。内部基准电压源通过软件写入启用。AD5667和A...
发表于 04-18 19:23 16次 阅读
AD5647R 双通道、14位NANODAC®,内置5 ppm/°C片内基准电压源和I2C®接口

AD5665R 四通道、16位nanoDAC®、内置5 ppm/°C片内基准电压源和I2C®接口

信息优势和特点 低功耗,最小的引脚兼容、四通道nanoDAC AD5625R/AD5645R/AD5665R12/14/16位nanoDAC2.5 V、5 ppm/°C片内基准电压源,采用TSSOP封装2.5 V、10 ppm/°C片内基准电压源,采用LFCSP封装1.25 V、10 ppm/°C片内基准电压源,采用LFCSP封装 AD5625/AD566512/16位nanoDAC只能使用外部基准电压源 3 mm × 3 mm、10引脚LFCSP和14引脚TSSOP 2.7 V至5.5 V电源供电 通过设计保证单调性 上电复位至零电平或中间电平 各通道独立关断 硬件LDAC和CLR功能 I2C兼容串行接口,支持标准(100 kHz)、快速(400 kHz)和高速(3.4 MHz)模式。产品详情AD5625R/AD5645R/AD5665R和AD5625/AD5665均属于nanoDAC®系列,分别是低功耗、四通道、12/14/16位缓冲电压输出数模转换器(DAC),含有或不含片内基准电压源,采用2.7 V至5.5 V单电源供电,通过设计保证单调性,还有一个I2C兼容型串行接口。AD5625R/AD5645R/AD5665R均内置一个片内基准电压源。AD56x5R的LFCSP封装产品内置一个1.25 V或2.5 V、10 ppm/°C基准电压源,满量程输出范围可达到2.5 V或5 V;AD56x5R的...
发表于 04-18 19:23 16次 阅读
AD5665R 四通道、16位nanoDAC®、内置5 ppm/°C片内基准电压源和I2C®接口

AD5645R 四通道、14位nanoDAC® ,内置5 PPM/°C片内基准电压源和I2C® 接口

信息优势和特点 低功耗,最小的引脚兼容、四通道 nanoDAC AD5625R/AD5645R/AD5665R12-/14-/16位 nanoDACs2.5 V、5 ppm/°C片内基准电压源,采用TSSOP封装2.5 V、10 ppm/°C片内基准电压源,采用LFCSP封装 1.25 V、10 ppm/°C片内基准电压源,采用LFCSP封装 AD5625/AD566512-/16位nanoDACs只能使用外部基准电压源 3 mm × 3 mm、10引脚LFCSP和14引脚TSSOP 2.7 V至5.5 V电源供电 通过设计保证单调性 上电复位至零电平或中间电平 各通道独立关断 硬件LDAC 和 CLR 功能 I2兼容串行接口,支持标准(100 kHz)、快速(400 kHz)和高速(3.4 MHz)模式。 产品详情AD5625R/AD5645R/AD5665R和AD5625/AD5665均属于nanoDAC®系列,分别是低功耗、四通道、12/14/16位缓冲电压输出数模转换器(DAC),含有或不含片内基准电压源,采用2.7 V至5.5 V单电源供电,通过设计保证单调性,还有一个I2C兼容型串行接口。AD5625R/AD5645R/AD5665R均内置一个片内基准电压源。AD56x5R的LFCSP封装产品内置一个1.25 V或2.5 V、10 ppm/°C基准电压源,满量程输出范围可达到2.5 V或5 V;...
发表于 04-18 19:23 18次 阅读
AD5645R 四通道、14位nanoDAC® ,内置5 PPM/°C片内基准电压源和I2C® 接口

AD5629R 八通道、12位、I2C电压输出denseDAC,集成5 ppm/°C片内基准电压源

信息优势和特点 低功耗、小尺寸、引脚兼容的八通道DAC:AD5629R:12位AD5669R:16位 4mm X 4mm 16引脚LFCSP和16引脚TSSOP封装 用户可选的1.25 V/2.5 V、5 ppm/ºC片内基准电压源 关断模式的功耗:400 nA (5 V)、200 nA (3 V) 2.7 V 至5.5 V电源供电 通过设计保证单调性 上电复位至零电平 3种关断功能 硬件LDAC和CLR功能 I2C 兼容型串行接口支持标准(100 kHz)和快速(400 kHz)模式产品详情AD5629R是一款低功耗、八通道、12位、缓冲电压输出DAC,采用2.7 V至5.5 V单电源供电,通过设计保证单调性。这款器件内置一个片内基准电压源,内部增益为2。AD5629R-1内置一个1.25 V、5 ppm/°C基准电压源,满量程输出范围为2.5 V;AD5629R-2和AD5629R-3内置一个2.5 V、5 ppm/°C基准电压源,满量程输出范围为5 V。上电时,片内基准电压关闭,因而可以用外部基准电压。内部基准电压则通过软件写入使能。该器件内置一个上电复位电路,确保DAC输出上电至0 V并保持该电平,直到执行一次有效的写操作为止。此外还具有各通道独立省电特性,在省电模式下,器件在5 V时的功耗降至400 nA,并提供软件可选输出负载。产品特...
发表于 04-18 19:23 305次 阅读
AD5629R 八通道、12位、I2C电压输出denseDAC,集成5 ppm/°C片内基准电压源

AD5625R 四通道、12位 nanoDAC® ,内置5 PPM/°C片内基准电压源和I2C® 接口

信息优势和特点 低功耗,最小的引脚兼容、四通道nanoDACs AD5625R/AD5645R/AD5665R12-/14-/16位 nanoDACs2.5 V、5 ppm/°C片内基准电压源,采用TSSOP封装2.5 V、10 ppm/°C片内基准电压源,采用LFCSP封装1.25 V、10 ppm/°C片内基准电压源,采用LFCSP封装 AD5625/AD566512-/16位nanoDACs只能使用外部基准电压源 3 mm × 3 mm、10引脚LFCSP和14引脚TSSOP 2.7 V至5.5 V电源供电 通过设计保证单调性 上电复位至零电平或中间电平 各通道独立关断 硬件 LDAC 和 CLR功能 I2C兼容串行接口,支持标准(100 kHz)、快速(400 kHz)和高速(3.4 MHz)模式。 产品详情AD5625R/AD5645R/AD5665R 和 AD5625/AD5665 均属于nanoDAC® 系列,分别是低功耗、四通道、12/14/16位缓冲电压输出数模转换器(DAC),含有或不含片内基准电压源,采用2.7 V至5.5 V单电源供电,通过设计保证单调性,还有一个I2C兼容型串行接口。 AD5625R/AD5645R/AD5665R均内置一个片内基准电压源。AD56x5R的LFCSP封装产品内置一个1.25 V或2.5 V、10 ppm/°C基准电压源,满量程输出范围可达到2.5 V...
发表于 04-18 19:23 94次 阅读
AD5625R 四通道、12位 nanoDAC® ,内置5 PPM/°C片内基准电压源和I2C® 接口

AD5627 双通道、12位nanoDAC®,内置I2C®接口

信息优势和特点 低功耗,最小的引脚兼容、双通道nanoDAC AD5627R/AD5647R/AD5667R:12/14/16位,1.25 V/2.5 V、5 ppm/°C片内基准电压源 AD5627/AD5667:12/16位,只能使用外部基准电压 3 mm x 3 mm、LFCSP和10引脚MSOP封装 采用2.7 V至5.5 V电源供电 通过设计保证单调性 上电复位至零电平 各通道独立关断 硬件LDAC和CLR功能 I2C兼容型串行接口,支持标准(100 kHz)、快速(400 kHz)和高速(3.4 MHz)三种模式产品详情AD5627R/AD5647R/AD5667R和AD5627/AD5667均属于nanoDAC系列,分别是低功耗、双通道、12/14/16位缓冲电压输出数模转换器(DAC),含有或不含片内基准电压源,采用2.7 V至5.5 V单电源供电,通过设计保证单调性,还有一个I2C兼容型串行接口。AD5627R/AD5647R/AD5667R均内置一个片内基准电压源。AD56x7RBCPZ内置一个1.25 V、5 ppm/°C基准电压源,满量程输出范围可达到2.5 V;AD56x7RBRMZ内置一个2.5 V、5 ppm/°C基准电压源,满量程输出范围可达到5 V。上电时,片内基准电压源关闭,因而可以用外部基准电压。内部基准电压源则通过软件写入启用。AD5667和AD5...
发表于 04-18 19:23 80次 阅读
AD5627 双通道、12位nanoDAC®,内置I2C®接口

AD5627R 双通道、12位nanoDAC® ,内置5 PPM/°C片内基准电压源和I2C® 接口

信息优势和特点 低功耗,最小的引脚兼容、双通道nanoDAC AD5627R/AD5647R/AD5667R:12/14/16位,1.25 V/2.5 V、5 ppm/°C片内基准电压源 AD5627/AD5667:12/16位,只能使用外部基准电压源 3 mm x 3 mm、LFCSP和10引脚MSOP封装 2.7 V至5.5 V电源供电 通过设计保证单调性 上电复位至零电平 各通道独立关断 硬件LDAC和CLR功能 I2C兼容型串行接口,支持标准(100 kHz)、快速(400 kHz)和高速(3.4 MHz)三种模式产品详情AD5627R/AD5647R/AD5667R和AD5627/AD5667均属于nanoDAC系列,分别是低功耗、双通道、12/14/16位缓冲电压输出数模转换器(DAC),含有或不含片内基准电压源,采用2.7 V至5.5 V单电源供电,通过设计保证单调性,还有一个I2C兼容型串行接口。AD5627R/AD5647R/AD5667R均内置一个片内基准电压源。AD56x7RBCPZ内置一个1.25 V、5 ppm/°C基准电压源,满量程输出范围可达到2.5 V;AD56x7RBRMZ内置一个2.5 V、5 ppm/°C基准电压源,满量程输出范围可达到5 V。上电时,片内基准电压源关闭,因而可以用外部基准电压。内部基准电压源则通过软件写入启用。AD5667和AD562...
发表于 04-18 19:23 164次 阅读
AD5627R 双通道、12位nanoDAC® ,内置5 PPM/°C片内基准电压源和I2C® 接口

AD5625 四通道、12位 nanoDAC®,内置 I2C® 接口

信息优势和特点 低功耗,最小的引脚兼容、四通道nanoDAC AD5625R/AD5645R/AD5665R12-/14-/16位 nanoDACs2.5 V、5 ppm/°C片内基准电压源,采用TSSOP封装2.5 V、10 ppm/°C片内基准电压源,采用LFCSP封装1.25 V、10 ppm/°C片内基准电压源,采用LFCSP封装 AD5625/AD566512-/16位nanoDACs只能使用外部基准电压源 3 mm × 3 mm、10引脚LFCSP和14引脚TSSOP 2.7 V 至5.5 V电源供电 通过设计保证单调性 上电复位至零电平或中间电平 各通道独立关断 硬件 LDAC 和 CLR 功能 I2C兼容串行接口,支持标准(100 kHz)、快速(400 kHz)和高速(3.4 MHz)模式。产品详情AD5625R/AD5645R/AD5665R和AD5625/AD5665均属于nanoDAC®系列,分别是低功耗、四通道、12/14/16位缓冲电压输出数模转换器(DAC),含有或不含片内基准电压源,采用2.7 V至5.5 V单电源供电,通过设计保证单调性,还有一个I2C兼容型串行接口。AD5625R/AD5645R/AD5665R均内置一个片内基准电压源。AD56x5R的LFCSP封装产品内置一个1.25 V或2.5 V、10 ppm/°C基准电压源,满量程输出范围可达到2.5 V或...
发表于 04-18 19:23 113次 阅读
AD5625 四通道、12位 nanoDAC®,内置 I2C® 接口

AD5622 2.7 V至5.5 V、小于100 nanoA、12位nanoDAC®数模转换器,内置I2C兼容型接口,采用SC70小型封装

信息优势和特点 单通道8/10/12位DAC,INL = 2 LSB 6引脚SC70封装 微功耗工作:5 V时最大电流100 µA 关断模式:<150 nA (3 V) 采用2.7 V至5.5 V电源供电 通过设计保证单调性 上电复位至0 V,具有掉电检测功能 3种关断功能 支持I2C®兼容型串行接口:标准(100KHz)、快速(400KHz)及高速(3.4MHz)模式 片内轨到轨输出缓冲放大器 工作温度范围:-40ºC至125ºC产品详情AD5602/AD5612/AD5622均属于nanoDAC®系列,分别是单通道、8/10/12位、缓冲电压输出DAC,使用2.7 V至5.5 V单电源供电,5 V时功耗小于100 µA,采用SC70小型封装。每个DAC都内置片内精密输出放大器,能够实现轨到轨输出摆幅。AD5602/AD5612/AD5622采用双线式I2C兼容型串行接口,能够以标准(100 KHz)、快速(400 KHz)及高速(3.4 MHz)三种模式工作。三款器件的基准电压均从电源输入获得,因此具有最宽的动态输出范围。各器件内置一个上电复位电路,确保DAC输出上电至0 V并保持该电平,直到对该器件执行一次有效的写操作为止。此外还具有关断特性,在关断模式下,器件在3 V时的功耗降至150 nA以下,并提供软件可选输出负载。可...
发表于 04-18 19:22 253次 阅读
AD5622 2.7 V至5.5 V、小于100 nanoA、12位nanoDAC®数模转换器,内置I2C兼容型接口,采用SC70小型封装

AD5612 2.7 V至5.5 V、小于100nanoA、10位NANODAC®数模转换器,内置I2C兼容型接口,采用SC70小型封装

信息优势和特点 单通道8/10/12位DAC,INL = 2 LSB 6引脚SC70封装 微功耗工作:5 V时最大电流100 µA 关断模式:<150 nA (3 V) 2.7 V至5.5 V电源供电 通过设计保证单调性 上电复位至0 V,具有掉电检测功能 3种关断功能 支持I2C®兼容型串行接口:标准(100KHz)、快速(400KHz)及高速(3.4MHz)模式 片内轨到轨输出缓冲放大器 工作温度范围:-40ºC至125ºC产品详情AD5602/AD5612/AD5622均属于nanoDAC®系列,分别是单通道、8/10/12位、缓冲电压输出DAC,使用2.7 V至5.5 V单电源供电,5 V时功耗小于100 µA,采用SC70小型封装。每个DAC都内置片内精密输出放大器,能够实现轨到轨输出摆幅。AD5602/AD5612/AD5622采用双线式I2C兼容型串行接口,能够以标准(100 KHz)、快速(400 KHz)及高速(3.4 MHz)三种模式工作。 三款器件的基准电压均从电源输入获得,因此具有最宽的动态输出范围。各器件内置一个上电复位电路,确保DAC输出上电至0 V并保持该电平,直到对该器件执行一次有效的写操作为止。此外还具有关断特性,在关断模式下,器件在3 V时的功耗降至150 nA以下,并提供软件可选输出负载。可通...
发表于 04-18 19:22 190次 阅读
AD5612 2.7 V至5.5 V、小于100nanoA、10位NANODAC®数模转换器,内置I2C兼容型接口,采用SC70小型封装

AD5602 2.7 V至5.5 V、小于100 nanoA、8位 NANODAC® 数模转换器,内置I2C兼容型接口,采用SC70小型封装

信息优势和特点 单通道8/10/12位DAC,INL = 2 LSB 6引脚SC70封装 微功耗工作:5 V时最大电流100 µA 关断模式:<150 nA (3 V) 2.7 V至5.5 V电源供电 通过设计保证单调性 上电复位至0 V,具有掉电检测功能 3种关断功能 支持I2C®兼容型串行接口:标准(100KHz)、快速(400KHz)及高速(3.4MHz)模式 片内轨到轨输出缓冲放大器 工作温度范围:-40ºC至125ºC产品详情AD5602/AD5612/AD5622均属于nanoDAC®系列,分别是单通道、8/10/12位、缓冲电压输出DAC,使用2.7 V至5.5 V单电源供电,5 V时功耗小于100 µA,采用SC70小型封装。每个DAC都内置片内精密输出放大器,能够实现轨到轨输出摆幅。AD5602/AD5612/AD5622采用双线式I2C兼容型串行接口,能够以标准(100 KHz)、快速(400 KHz)及高速(3.4 MHz)三种模式工作。 三款器件的基准电压均从电源输入获得,因此具有最宽的动态输出范围。各器件内置一个上电复位电路,确保DAC输出上电至0 V并保持该电平,直到对该器件执行一次有效的写操作为止。此外还具有关断特性,在关断模式下,器件在3 V时的功耗降至150 nA以下,并提供软件可选输出负载。可通过...
发表于 04-18 19:22 204次 阅读
AD5602 2.7 V至5.5 V、小于100 nanoA、8位 NANODAC® 数模转换器,内置I2C兼容型接口,采用SC70小型封装